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ABSTRACT 

To mitigate global warming requires urgent action to both reduce greenhouse gas 

emissions and increase carbon sequestration. The afforestation of unproductive 

agricultural land is a prominent strategy for achieving this, yet considerable uncertainty 

surrounds the impact this will have on soil organic carbon (SOC) stocks. In an effort to 

address this uncertainty, this study compared SOC stocks (0-15cm) across a 

chronosequence, ranging an upland pasture (P) through a roughly 40-year-old upland 

oak woodland (RW), to an ancient oak woodland (AW). Soil samples were taken from 

each plot (alongside in-situ soil pH and temperature readings) and analysed for moisture 

content and SOC content using loss on ignition. Contrary to expectations, SOC stocks 

were greatest in the RW (146.17 tonnes C ha-1), followed by the AW (120.93 tonnes C 

ha-1) and lowest in the P (97.42 tonnes C ha-1). These values are within the ranges 

previously reported in the UK, and differences between plots are largely explained by 

changes soil moisture and woodland management. Ultimately, the afforestation of upland 

pastures with oak woodland may be an effective strategy to enhance SOC sequestration, 

providing average SOC gains of 26%.  



1.0 INTRODUCTION 

 

1.1  The role of soils in climate change mitigation 

The climate crisis is a global challenge that requires immediate and sustained action to 

mitigate future warming. To achieve this will require (at the very least) net-zero emissions 

by 2050 (IPCC, 2019). Indeed, almost all future scenarios consistent with limiting 

warming below 2°C assume a significant near-term reduction in anthropogenic 

greenhouse gas (GHG) emissions alongside large-scale CO2 removal (Smith, P. et al., 

2015). In this context, protecting and restoring soils emerges as a vital Nature-based 

Solution (NbS; Griscom et al., 2017). Soils contain around two-thirds of terrestrial organic 

carbon (1700 Gt; Friedlingstein et al., 2023) and the role of Soil Organic Matter (SOM) 

in climate regulation has long been acknowledged (Jenkinson et al., 1991). Research 

has highlighted significant historical losses of C from this pool (116 Gt; Sanderman et al., 

2017) and the potential for accelerated losses under future warming (Hicks Pries et al., 

2017; Jenkinson et al., 1991). Building Soil Organic Carbon (SOC) therefore, serves as 

a NbS by not only replenishing a C sink but also by safeguarding against additional 

climate and land-use change driven CO2 emissions. 

 

1.2  Soil carbon change following afforestation  

Globally, afforestation of agricultural land has the potential to sequester significant 

amounts of C (around 205 Gt; Bastin et al., 2019). While it is well established that this 

would create a large C store in the form of aboveground biomass, the effects on SOC 

are much more uncertain (Guo and Gifford, 2002). By definition, afforestation is the 

conversion of non-forested land into forest. When this occurs, the change in SOC is 

governed by a number of factors, including prior land use (e.g., pasture or arable), tree 

species, management practices, soil properties (e.g., clay content, pH, moisture, and 

temperature), and topography (Ashwood et al., 2019; Bárcena et al., 2014). There has 

been considerable effort globally to investigate the change in SOC following 

afforestation, yet results are highly inconsistent. For example, studies have reported no 

change in SOC stocks (Degryze et al., 2004), to increases (Guo and Gifford, 2002) or 

declines (Poeplau et al., 2011).  Nevertheless, many of these have shown the same 

general trend, with small losses in SOC immediately following afforestation before 

reversing and potentially increasing with stand age until pre-afforestation SOC levels are 

reached or surpassed (Laganière et al., 2010; Paul et al., 2002). 

SOC is an important component of SOM, making up around 50-58% of it (Pribyl, 2010). 

SOM itself is the non-living part of organic matter and accumulates in soils when organic 

matter inputs from litterfall and rhizodeposition outweigh losses through microbial 



decomposition, erosion, or leaching (Jandl et al., 2007). When forests are cleared for 

agriculture, SOC depletion may be caused by (1) changes in soil moisture and 

temperature conditions that accelerate the decomposition of organic matter, (2) 

increased soil erosion, (3) decreased soil aggregation and physical protection of SOM, 

and (4) an overall reduction in above- and below-ground biomass inputs (Lal, 2005). For 

this reason, many agricultural soils contain SOC stocks 20-50% lower than their pre-

conversion equivalents (Bárcena et al., 2014; Lal, 2005). By extension, the opposite is 

true following afforestation, with greater organic matter inputs, reduced soil erosion, 

increased SOC aggregation, and changes in soil microclimate (Gaiser and Stahr, 2013; 

Li et al., 2012). Ultimately, however, while there is considerable global pressure to 

convert unproductive agricultural land back to native forest (FAO, 2020), only a very 

small proportion of existing research has investigated the impact of this conversion on 

SOC stocks outside the context of commercial forestry. 

 

1.3 UK Woodland expansion potential 

There is a growing body of research demonstrating the environmental and public health 

benefits of trees (Ciccarese et al., 2012; Griscom et al., 2017). Along with the continued 

loss of forests worldwide, this has resulted in greater public demand for the expansion 

of UK woodlands. Spurred by its status as one of the least wooded countries in Europe 

(Forestry Comission, 2017), UK government policy now backs this public demand for 

woodland expansion. This is demonstrated by the implementation of a woodland carbon 

guarantee scheme alongside other initiatives outlined in the UKs 25-year environment 

plan (Defra, 2018a). However, to fulfil its climate change commitments, the UK will 

require significant woodland expansion in the order of 30,000 hectares annually by 2025 

(Ares et al., 2021). Yet, the UK landscape is a crowded landscape where most land 

parcels serve a range of land covers and uses. Thus, afforestation on a scale large 

enough to make a meaningful contribution to carbon budgets may come with significant 

trade-offs. For example, the trade-offs with food security and associated risks of carbon 

leakage (Bateman et al., 2023; Doelman et al., 2020). Additionally, there are both logistic 

and economic costs associated with large-scale tree planting (NCC, 2020), as well as 

the impact afforestation may have on ecoystem service (ESS) provision (Friggens et al., 

2020; Seddon et al., 2019). Ultimately, the facilitation of natural colonisation may be a 

more effective, environmentally sensitive, and cheaper alternative to planting (Cook-

Patton et al., 2020; Crouzeilles et al., 2020), although its viability is not well understood. 

As home to fragments of a once much more extensive woodland type, and as areas of 

marginal agricultural productivity, the UK uplands are a prime candidate for afforestation. 



1.4 A case for woodland expansion into upland pastures 

Uplands cover around 38% of UK land area (Bunce et al., 2018) and could present a 

major opportunity for woodland expansion. Despite being internationally recognised for 

their heathland biodiversity and carbon stocks in the form of peatlands (Billett et al., 2010; 

Reed et al., 2009), these uplands are often ecologically and economically marginal 

areas, largely underutilised in terms of their potential for ESS provision (Bonn et al., 

2014; O’Neill et al., 2020). One significant underutilised aspect of the uplands is their 

role as the headwaters of many UK river catchments and areas of greatest precipitation 

(Curtis et al., 2014). This makes them key areas for floodwater attenuation efforts (Burt 

and Holden, 2010; Wal and Ross, 2011). A practical example of such efforts is the 

planting of native woodlands to slow runoff by improving soil structure, increasing 

landscape roughness, and reducing hydrological connectivity (Nisbet et al., 2011; 

Robinson et al., 2003). Indeed, a large part of the flood attenuation effect of woodlands 

is derived from increases in SOC (Burton et al., 2018). Nevertheless, competing land 

use interests (such as livestock grazing) have caused a significant degradation of this 

upland landscape, diminishing its soil carbon stocks and hydrological function (Bonn et 

al., 2009; Rowney et al., 2022). However, recent shifts in agricultural policy, especially 

following the UK’s departure from the EU, open the door to refining upland management 

(Bateman and Balmford, 2018). The phasing out of the EU-derived Basic Payment 

Scheme signals a move towards a ‘public money for public goods’ model for land 

management that prioritises key ESSs (Bateman and Balmford, 2018). This shift is 

expected to significantly impact upland farms, which have historically depended on these 

subsidies for financial viability (Defra, 2017; Hanley et al., 2007). 

1.5 Upland oak woodlands 

Upland oak woodlands cover an estimated 70,000 to 100,000 hectares across the UK 

(Baarda, 2005) yet represent a fraction of a once much more widespread European 

habitat. Indeed, pollen records show that oaks dominated in the uplands prior to 

clearance in the late neolithic (6400-6000 years BP; Woodbridge et al., 2014). Since 

then, these woodlands have undergone significant reduction following agricultural 

expansion across Europe, only now existing on land that is unsuitable for agriculture 

(Roberts et al., 2018). Today, the fragments have global recognition for supporting 

specialist ferns, bryophyte, lichen, and animal assemblages (Baarda, 2005). Where 

these fragments occur along the oceanic west coast (high rainfall low temperature 

extremes), they support the richest bryophyte flora in Europe (Rothero, 2005). As with 

most upland woodlands, the principal constraint on the health and establishment of oak 

woodlands has been livestock and deer grazing (Barkham, 1978; Palmer et al., 2004). 

For example, while seeds do germinate, they are often overgrazed and rarely make it 

past the seedling stage (Humphrey et al., 2004). Given the observed decline these 



woodlands across Europe, their regeneration is of heightened significance (Denman et 

al., 2014). However, in terms of their SOC sequestration potential, little is known. Still, 

these woodlands typically establish on steeper sites with shallow soils, thus if sensitively 

encouraged the expansion of oak woodlands into upland pastures could complement 

rather than compete with other carbon rich habitats such as peat- and heathlands 

(Fletcher et al., 2021; Murphy et al., 2022). 

 

1.6 How the afforestation of pasture affects soil carbon stocks 

The precise agricultural land use prior to afforestation is a critical determinant of SOC 

sequestration rates. For example, while afforestation of former croplands is likely to 

enhance SOC stocks, the outcomes of afforestation on grassland or pasture are less 

clear and more variable (Bárcena et al., 2014; Guo and Gifford, 2002). A global meta-

analyses found that often, the conversion of pasture or grassland to forest produces 

negligible (broadleaf) or negative (coniferous) rates of SOC sequestration (Laganière et 

al., 2010), with 75% of temperate grassland conversions showing SOC losses even after 

140 years (Poeplau et al., 2011). Typically, these losses occur within the initial years of 

conversion (Paul et al., 2002). Multiple surveys of afforested mineral soil sites throughout 

England and Wales support this, reporting SOC losses in the 0-30 cm layer after 30 years 

(Hannam et al., 2016). These losses are often attributed to a combination of site 

disturbance and a cessation of herbaceous root litter C inputs which are finer and have 

faster turnover rates than tree roots (Kuzyakov and Domanski, 2000). Nevertheless, the 

primary body of evidence for these findings is dominated by studies of non-native conifer 

plantations and thus making any robust predictions about how SOC stocks will respond 

to broadleaf afforestation is difficult.  

Of the few studies that have considered broadleaf afforestation, many also report no 

clear difference between pasture and woodland soil C stocks. For example, an Ireland-

wide study by Wellock et al., (2011) found no significant difference in mineral SOC stock 

(0-30cm) between (broadleaf) afforested and adjacent non-forested sites (paired pre-

afforestation habitat: pasture and rough grazing). Consistent with this finding, Upson et 

al., (2016) report no net change in C stocks in the mineral soil layers for 15 years 

following afforestation of lowland pastures. A similar study of an ash chronosequence in 

Ireland found a continuous decline in SOC stocks for the first 27 years, from which point 

SOC stocks began to increase (Wellock, 2011).  However, rates of SOC accumulation 

were slower than initial losses, with SOC stocks in 47-year ash woodlands only 79% of 

pre-afforestation grasslands. The only UK-based review of upland grasslands reports 

inconclusive evidence for the magnitude or direction of SOC change following 

afforestation, citing a lack of relevant UK datasets (Reynolds, 2007). SOC stocks of 



woodlands established on arable soils are shown to increase with stand age, as the trees 

continually add litter to the soil (Ashwood et al., 2019). This is unlikely to be the case for 

pasture as baseline SOC stocks are often similar to or greater than those in mature 

forests and ancient woodlands (Ashwood et al., 2019; Garten and Ashwood, 2002; Post 

and Kwon, 2000).  Ultimately, it remains uncertain to what extent findings from lowland 

soils can be extended upland agricultural systems, particularly in light of inconsistencies 

in sampling methodology. 

 

1.7 Outline of research questions and hypotheses 

Given the lack of clarity on the impact that afforestation of pasture has on SOC stocks, 

as well as the general lack of research on native broadleaved afforestation, this study 

aims to address the following questions: 

(1) Can the expansion of oak woodland into upland pastures effectively increase 

topsoil SOC stocks? 

(2) Does the SOC sequestration potential of these woodlands increase over time? 

Furthermore, given that upland pastures are generally located on unproductive sloped 

land this study will also address the following question: 

(3) How does the relationship between slope gradient and SOC change following 

afforestation? 

  



2. METHODOLOGY 

2.1 Study area 

Located on the western fringe of Bodmin Moor, Cornwall, Cabilla manor farm is a 300-

acre hill farm with 100 acres of woodland and 200 acres of grade 4 pasture – grazed 

intensively since 1972 and exclusively by highland cattle and sheep since 2001. The site 

is bisected by the river Bedalder, a second order tributary of the river Fowey (Figure 1). 

The site averages 210m in elevation and is subject to a cool-temperate oceanic climate 

with an annual mean temperature range of 7.21 to 13.45oC. The region receives 1431.7 

mm y-1 in rainfall, of which ~20% falls over the summer months (June to August; Met 

Office, 2020). Soils on the estate comprise freely draining acid loamy soils over granite 

(Appendix A1). The three plots chosen for sampling are a grazed pasture (P), an 

adjacent ancient oak woodland (AW) and a nearby naturally regenerated 30 to 40-year 
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Figure 1: a) Location of Bodmin Moor within Cornwall. b) Location of Cabilla Manor Farm 

within Bodmin moor. c) Site map including contours to show topography. Elevation rages 

from 250 to 180 m at river level.  



oak woodland, referred to as recent woodland (RW). Both woodlands fall under the W1 

(UKHab) community of upland oakwood and have similar understories dominated by 

bracken and bramble in places. Both woodlands are dominated by pedunculate oak 

(Quercus robur) and have low species and structural diversity. The AW has a previous 

management history of oak timber and coppice production. For the RW, historical 

mapping (Epoch 1) classifies the plot as open rough ground (1875-1901). The plot is last 

mapped as pasture/open ground with gorse and bracken in 1980 (Epoch m7). 

Subsequent maps classify the plot as broadleaved woodland.  

 

2.2 Experimental design 

Woodland soils have greater variability and more possible sources of error than 

agricultural soils for SOC estimation. The following methodology for sample site 

selection, collection, and laboratory analysis, therefore, was designed primarily to 

alleviate these sources of error as much as possible. It is based on the recommendations 

laid out by Vanguelova et al., (2016). In addition, topographic factors like slope aspect 

and gradient have a significant impact on SOC variability within a landscape, making 

them important factors to control for (Zhu et al., 2019). To achieve this, National LiDAR 

Programme DTM (1m resolution) data were downloaded from Defra (Defra, 2018b), and 

QGIS 3.28.8 was used to analyse slope characteristics and establish sampling points 

based on a stratified random sampling strategy (Figure 2).  

To determine the location and number of soil sampling points, a stepwise process was 

followed. First, slope aspect in each plot was compared. Only South facing slopes were 

present in two plots, so north facing slopes were excluded from further analysis. Similarly, 

plot RW had a maximum slope gradient of 20 degrees, so no samples were taken on 

slopes greater than this. To ensure all slope gradients were sampled, plots were divided 

into four slope classes by equal interval classification: 0-5, 5-10, 10-15, and 15-20. To 

account for woodland soil variability, Vanguelova et al., (2016) recommend a minimum 

of 4 sample points per 0.25 ha woodland plot. With this in mind, the largest plot when 

filtered by south facing slopes was 2.38 ha. Therefore, a minimum of 38 samples from 

each plot are required. To select sampling locations, the QGIS feature ‘Random Points 

in Polygons’ was used to select 10 points from each slope class, totalling 40 per plot. As 

collecting and processing bulk density (BD) samples is time intensive (Vanguelova et al., 

2016), only one sample per slope class was taken. Once processed these would be 

averaged out providing a single BD for each plot.  

 



 

2.3  Sample collection 

Samples were collected throughout August 2023 when the forest floor is at its minimum 

mass (i.e., before autumn litterfall; Figure 3). At each sample site, surface vegetation 

and all recognisable leaf litter were cleared to expose bare soil which then defined 0 cm 

depth. For SOM samples, a soil gouge was used to extract the upper 15 cm of soil 

(Figure 4). Once extracted, samples were placed in airtight polythene bags and frozen 

until laboratory analysis. Additionally, at each sample point measurements of soil pH and 

temperature were taken using a HI-99121 waterproof pH & temperature meter. Finally, 

for BD samples, a 50.16 mm internal diameter and 49.52 mm height (97.86 cm3 volume) 

stainless steel cylinder was pressed into the ground, carefully removed and then trimmed 

 

P 

RW 

AW 

Figure 2: Location of soil sampling points. At each point, soil cores were taken, and soil 

temperature and pH were measured in situ. The reason a large portion of the AW is 

excluded from sampling is that these areas are either north-facing or have a slope 

gradient >20°. 



to remove excess soil. The soil core was extruded into a sample bag and frozen until 

laboratory analysis. This was repeated for three depths at BD sampling points (e.g., 0-5, 

5-10, 10-15 cm).  

 

Deeper sampling (subsoil) is sometimes recommended to better reflect long-term 

change in SOC following afforestation (Shi et al., 2013), however, preliminary soil pits in 

each plot were found to be <30-40cm deep before reaching substantial pieces of 

 

 

Figure 4: Picture of soil gouge used with vegetation scraped away in the P (left) and a 

sample to 15 cm depth (right), authors photography. 

Figure 3: Pictures of site conditions at the time of sample collection (August 2023) in the 

P (left), RW (middle), and AW (right).  While understories of woodlands are similar, the 

AW has evidently greater coverage of bracken. 



underlying bedrock, which were impenetrable by hand tools. Sampling from the upper 0-

10 cm depth is the most common (Vanguelova et al., 2016) and would be sufficient in 

this instance. However, a lack of standardised sampling protocols in the literature, 

alongside the variability of soils makes comparisons between studies unreliable. 

Sampling from the upper 0-15 cm depth instead, reflects a nationally representative 

topsoil layer (Carey et al., 2008) and allows for comparisons to many UK-based studies 

(Gregg et al., 2021; Vanguelova et al., 2013) as well as to established countryside survey 

soil health benchmarks in the UK (Feeney et al., 2023). Nevertheless, the upper 15 cm 

is shown to store greater proportions of SOC compared to deeper layers and better 

reflects recent management changes (Bárcena et al., 2014; Mayer et al., 2020; Paul et 

al., 2002).  

 

2.4 Laboratory analysis 

Loss on Ignition (LOI) was chosen for estimating SOM for its accuracy, simplicity, and 

affordability. To alleviate the effect that mineralogical composition has on SOM/LOI 

relationships (Kasozi et al., 2009), samples were taken from plots with the same 

underlying soil type. As with sampling depth, a general agreement on the methodology 

for estimating soil carbon content using LOI is lacking. Therefore, the methodology used 

here is synthesised from similar studies while considering potential sources of error 

(Figure 5). For example, while it has been suggested that sieving samples to 2 mm may 

underestimate the carbon content of forest soils (Laganière et al., 2010), the majority of 

studies still use and recommend 2 mm.  

 

Soil moisture content was calculated for each sample as a function of oven dried sample 

weight (Equation 1). SOM was calculated using sample weights prior to and after ignition 

(Equation 2). For bulk density, samples were oven dried for 18 hours at 105oC. The 
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ignited in 
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furnace for 
2 hours at 

550oC

Samples 
cooled in 
desiccator 

for 30 
minutes

Samples re-
weighed (W2)

 Figure 5: Flow chart demonstrating methodology used to determine SOM content from 

each soil sample. 



sample dry weight was divided by 97.86 (sample volume) to give a dry soil weight by unit 

volume in g cm-3 (Equation 3). 

 

𝑆𝑜𝑖𝑙 𝑚𝑜𝑖𝑠𝑡𝑢𝑟𝑒 (%) =  
𝐿𝑜𝑠𝑠 𝑖𝑛 𝑠𝑜𝑖𝑙 𝑤𝑒𝑖𝑔ℎ𝑡 (𝑔)

𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑠𝑜𝑖𝑙 (𝑔)
 × 100 

 

𝑆𝑂𝑀 (%) =  
𝑊1 − 𝑊2

𝑊1
 × 100 

𝑊1 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑏𝑒𝑓𝑜𝑟𝑒 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 

𝑊2 = 𝑊𝑒𝑖𝑔ℎ𝑡 𝑎𝑓𝑡𝑒𝑟 𝑖𝑔𝑛𝑖𝑡𝑖𝑜𝑛 

𝐵𝐷 (𝑔 𝑐𝑚−3) =  
𝑊𝑒𝑖𝑔ℎ𝑡 𝑜𝑓 𝑜𝑣𝑒𝑛 𝑑𝑟𝑖𝑒𝑑 𝑠𝑜𝑖𝑙 (𝑔)

𝑆𝑎𝑚𝑝𝑙𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 (𝑐𝑚3)
 

 

2.5 Data analysis and interpretation 

2.5.1  Carbon stock calculation 

SOC was derived by employing a conversion factor of 1.818 to SOM (i.e., assuming 

organic carbon constitutes 55% of SOM; Equation 4). The most frequently used 

conversion factor is, 1.724 (58%), although this may often overestimate SOC in 

woodland soils (Pribyl, 2010). Instead, the conversion factor chosen here was to allow 

for comparison to other UK-wide soil surveys (Emmett et al., 2010), and is within the 

appropriate range observed by other studies of forest soils (Bhatti and Bauer, 2002; De 

Vos et al., 2005). Next, topsoil (0-15cm) carbon stocks for each plot were calculated 

using average SOC and BD measurements (Equation 5).  

 

𝑆𝑂𝐶 (%) =  0.55 × 𝑆𝑂𝑀 (%) 

 

𝑆𝑜𝑖𝑙 𝐶𝑎𝑟𝑏𝑜𝑛 𝑆𝑡𝑜𝑐𝑘 =    𝑆𝑂𝐶   ×       𝐵𝐷        ×    𝑠𝑜𝑖𝑙 𝑑𝑒𝑝𝑡ℎ  

  

2.5.2  Woodland composition 

Woodland species composition was determined using point-centred quarter data. This 

included tree density, species dominance, and importance values. A canopy height 

Eq. (2) 

Eq. (1) 

Eq. (3) 

Eq. (5) 

(𝑡𝑜𝑛𝑛𝑒𝑠 ℎ𝑎−1) (𝑔 𝑐𝑚−3)  (𝑐𝑚) 

 

 (%) 

Eq. (4) 



model was created in QGIS 3.28.8 using ~3 cm resolution aerial photogrammetry of the 

site, captured in September 2023 and provided by the site owner. By excluding cells with 

a height value <1 m, this model was used to derive canopy cover (%) and average 

canopy height of each woodland plot. 

2.5.3  Statistical analysis 

Analyses were performed using R version 4.3.1 (R Core Team, 2017) and interpreted 

using a 95% confidence interval (significance criterion p≤0.05). All figures were produced 

using base R packages and ggplot2 (Wickham, 2009). First, each soil property (SOC, 

pH, temperature, moisture) in each plot (P, RW, AW) was tested for parametricity using 

the Shapiro-Wilkes test alongside visual inspection of histograms and QQ plot. 

Depending on their distribution, different statistical tests were used to compare soil 

properties between plots. Where these were non-parametric, a Wilcoxon rank-sum test 

was applied. For parametric variables, where variance (determined by F-tests) was equal 

(unequal) an independent (Welch’s) t-test was performed to determine any significant 

differences. Soil properties were plotted against each other, and correlations tested using 

Spearman’s correlation test if parametric, and Pearson’s if non-parametric. If correlations 

were significant, linear regression was used to determine the presence and strength of 

an explanatory relationship. Where necessary, multivariate regression analysis was 

conducted to identify the combination of variables that had the greatest impact on the 

dependent variable.  

  



3. RESULTS 

 

3.1  Comparison of carbon stocks and explanatory variables 

Every measured soil property was significantly different between plots, with the exception 

of pH and BD which showed no significant difference between the RW and AW (Table 

1). On average, samples from the pasture contained the lowest SOC (7.22%), followed 

by the ancient woodland (11.52%), and then recent woodland (19.12%). Accounting for 

BD (P = 0.90, RW = 0.51, AW = 0.70), C stocks in the upper 15 cm of soil increased 

sequentially from P (97.42 tonnes C ha-1) to AW (120.93 tonnes C ha-1) and then RW 

(146.17 tonnes C ha-1; Figure 6). This represents a 19.44% increase from P to AW, and 

a 33.35% increase from P to RW. The same trend is observed in soil moisture, being 

lowest in the P (54.44%), followed by AW (61.23%), and then RW (69.16%). Soil 

temperature was greatest in P (20.35 oC), followed by RW (17.55 oC), and then AW 

(16.33 oC). Soil pH, likewise, was greatest in P (5.90) although indistinguishable between 

woodlands (both 5.38). 

 

Table 1: Results of T-tests between each of the measured variables in each plot. Blue 

text represents independent (not welch’s) t-test, and black p values are from Wilcoxon 

rank sum t-tests.  

 

 

 

 

 



 

3.2 Relationships between SOC and other soil properties 

While no significant relationships were found between the measured soil properties at 

the site-level, some were observed at the plot-level. Simple linear analysis revealed that 

soil moisture was a significant predictor of SOC in the P (R2 = 0.53, p = <0.001), indicating 

that for every 1% increase in soil moisture, SOC is expected to increase by 

approximately 0.064% (Figure 7). Similarly, soil moisture was a significant predictor of 

log SOC in the RW (R2 = 0.61, p = <0.001) and AW (R2 = 0.68, p = <0.001), with a 1% 

increase in moisture causing an expected 5.106% and 3.854% increase in SOC, 

respectively. 

 
Figure 6: Boxplots showing differences between variables. Solid black bar within box body 

represents median value. Each measurement is significantly different with the exception of 

pH between woodlands.  

 

 



 

Additionally, analysis revealed that slope gradient explains about 34% of the variation in 

SOC in P (R²=0.34, p< 0.001), although no such relationship is observed in the 

woodlands (Figure 8). In line with this, no clear spatial distribution in SOC stock is 

observed in either plot (Figure 9). Within the pasture, multivariate regression revealed 

SOC was most strongly dependent on soil moisture and slope gradient (R2=0.60, 

p<0.001). Moisture alone explained a similar amount of variation in SOC (R2=0.53, 

p<0.001), though the overall model was stronger with slope gradient included.  

 

 

y = 3.7 + 0.064x 

R2 = 0.53 

p <0.001 

y = 0.035 + 0.039x 

R2 = 0.68 

p <0.001 

y = -0.63 + 0.051x 

R2 = 0.61 

p <0.001 

Shapiro-Wilkes  

p = 0.01 

p = 0.44 

p = 0.51 

a) b) 

c) d) 

Figure 7: Relationships between soil moisture and SOC for each plot. Note the log-linear 

relationships in plot (b) RW, and (c) AW. Dashed lines in plots a, b, and c represent the 

model fit. Plot d shows residual distributions for each regression line. Despite the 

Shapiro-Wilk test showing a p-value <0.05 for the ‘P’ residuals, normality is supported by 

visual inspection of the QQ plot and histogram.  

 

 



 

 

 

 

 

 

 

 

 

y = 7.7 – 0.049x 
R2 = 0.34 

p <0.001 

y = 10 +0.12x 

R2 = 0.04 

p <0.24 

y = 15 + 0.35x 

R2 = 0.08 

p <0.06 

Shapiro-Wilkes  

p = 0.70 

a) b) 

c) d) 

Figure 8: Relationships between slope gradient and SOC in the P (a), RW (b), and AW (c). The 

only significant relationship observed is in P. Dashed lines in plots a, b, and c represent the model 

fit. Plot d shows residual distributions for P regression line. 



 

3.3  Woodland tree species, density, canopy cover, and height comparison 

PCQ data revealed that tree density was slightly lower in the AW compared to RW (561 

and 660 trees ha-1
, respectively), but not significantly different (t = -0.83, p = 0.45). In both 

woodlands, only pedunculate oak (Quercus robur) and hazel (Corylus avellana) were 

recorded, oak being the dominant tree in both cases (AW = 98.77%, RW = 94.52%). 

Importance values for these species were almost indistinguishable between woodlands 

(AW oak = 224.66, hazel = 75.34; RW oak = 226.67, hazel = 73.33). Comparing tree size 

P 

RW 
AW 

Figure 9: 2D interpolation map of SOC stocks in each plot. No clear topographic trend 

in SOC stock is observed. P clearly presenting with lowest averages SOC stock. 

 

 



between woodlands, the diameter at breast height (DBH) of oaks were significantly larger 

in the AW (44.73 cm) than the RW (25.17 cm; Figure 10). Average tree height was 

likewise greater in the AW (12.83 m) compared to the RW (6.68 m), although overall 

canopy cover was similar (AW = 98.05%, RW = 95.87%).   
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Figure 10: Bar chart (a) comparing the average DBH of tree species in the AW and RW. 

P-values represent results from t-tests and show the DBH of oak but not hazel to be 

significantly different between woodlands. Bar chart b presents the canopy height model 

derived average tree height of both woodlands. Error bars represent standard deviation. 

No overlap suggests a significant difference in tree height. 



4. DISCUSSION 

 

4.1  How SOC stocks compare to other studies 

The SOC stocks (0-15 cm) reported here were found to be significantly higher in both 

the AW (120.93 tonnes C ha-1) and RW (146.17 tonnes C ha-1) compared to pasture 

(97.42 tonnes C ha-1). This represents around a 33% increase from the P to the RW, and 

a 19% increase from P to AW. While these SOC stocks are relatively high, they are within 

the range of expected values for these land covers in Britain. For example, a survey of 

upland grasslands (including permanent pasture) found SOC stocks of 74 tonnes C ha-1 

(59 to 101; Eze et al., 2018). Using the soil health benchmarks created by Feeney et al., 

(2023) to calculate SOC stocks for modified grassland yields a similar result of 68 tonnes 

C ha-1 (46 to 123). This range is particularly relevant, being calculated for modified 

grassland on light coarse textured soils in a high rainfall environment (>1000 mm yr-1) 

i.e., soil and climate conditions similar to the study site. Using the same methodology to 

calculate SOC stocks for broadleaved woodlands returns 74 tonnes C ha-1 (32 to 162; 

Feeney et al., 2023). SOC stocks (0-15 cm) for oak woodlands specifically were only 

available from a single study of urban woodlands by Edmondson et al., (2014), who 

found SOC stocks of 65 tonnes ha-1 (20 to 90). 

4.2  Explaining the variations in SOC between pasture and woodlands 

Considering the findings of earlier studies, it was expected that SOC stocks in the P 

would be either statistically indistinguishable or slightly higher than those in the RW and 

AW (Guo and Gifford, 2002; Upson et al., 2016; Wellock et al., 2011). This is particularly 

true given that afforestation of pasture in high rainfall areas almost always leads to SOC 

losses (Kirschbaum et al., 2008). However, the findings from this study largely contradict 

these expectations, with SOC stocks being greatest in the RW, followed by AW, and 

lowest in the P. This may be explained by differences in the other measured variables: 

Soil temperature, pH, and moisture. Firstly, the relationship between soil temperature 

and soil respiration (decomposition) is well established, with greater temperatures 

leading to accelerated rates of SOM decomposition and thus SOC loss (Davidson and 

Janssens, 2006; Yvon-Durocher et al., 2012). With this in mind, the greater soil 

temperature recorded in the P (20.35 oC) compared to the RW (17.55 oC) and AW (16.33 

oC) could be inhibiting SOC accumulation. However, in this instance, temperature is 

unlikely to be exerting the greatest control on SOC stocks, as no significant relationship 

between temperature and SOC was observed in any plot.  

Soil pH is also known to have a meaningful impact on SOC through acting as a control 

on microbial communities and enzyme activity. Indeed, soil microbial efficiency is 

demonstrated to be maximal around pH 6 to 7 (Liao et al., 2016), with a pH outside this 



range reducing rates of decomposition and enhancing SOC accumulation (Malik et al., 

2018). Significant associations between soil pH and SOC have been reported by field 

studies though the relationship varies substantially between land uses. For example, in 

forest soils pH explains only 4.3% of the variation in SOC, whereas for grasslands the 

figure is 59.4% (Liao et al., 2016). Nevertheless, in the current study there were no 

significant associations between soil pH and SOC in any plot. Thus, while soil pH was 

closer to optimal in the P (5.9) compared to the RW (5.38) or AW (5.38), this is unlikely 

to explain the observed differences in SOC. However, this study does relate to the 

broader afforestation literature in that pH was greatest in the P (Mayer et al., 2020). This 

is likely explained by the high acidity of oak leaves and the organic acids produced during 

litter decomposition (Yuan et al., 2023). 

Differences in soil moisture between plots are the most likely explanation for the variation 

in SOC, being lowest in the P (54.44%), followed by the AW (61.23%), then RW 

(69.16%). Much like temperature and pH, moisture affects SOC by governing SOM 

decomposition rates and nutrient availability (Larson et al., 2023). Soil respiration rates, 

which are linked to decomposition and thus carbon loss, tend to increase as the soil dries 

in temperate hardwood forests (Davidson et al., 1998). Comparing woodlands and 

grasslands in the Eastern USA, Smith and Johnson (2004) also found decreased 

moisture in woodlands to be associated with lower rates of soil respiration. In fact, under 

many land-uses soil moisture is often the single most influential predictor variable for 

SOC (Kerr and Ochsner, 2020). This was also found to be the case in the current study, 

with moisture being the only soil property to exhibit a significant association with SOC in 

each plot, explaining 53%, 61%, and 68% of the variability in SOC in the P, RW, and AW 

respectively. Where this study diverges from previous findings is that soil moisture 

increased from P to woodlands. Typically, afforestation of pasture has been associated 

with a decrease in soil moisture, as rates of evapotranspiration increase (Nosetto et al., 

2012; Upson et al., 2016).  

Slope gradient was also shown to be a significant predictor of SOC in the pasture, though 

multivariate regression confirmed the strength of the relationship was weaker than 

between moisture and SOC. Still, the negative relationship between slope gradient found 

here is contrary to expectations, with prior grassland studies reporting either no 

relationship (Zhang, Xueyao et al., 2018), or a slight positive relationship (Fissore et al., 

2017). It is possible that the P is losing soil on steeper slopes through the same 

mechanism as croplands (Borrelli et al., 2017), though this is unlikely as slope gradient 

is shown to have no effect on soil loss in grasslands (Zhang, Xuexian et al., 2021). 

Nevertheless, that the relationship observed in the P is not present in either woodland 

highlights the capacity of woodlands to disrupt soil movement and SOC loss (Hou et al., 



2020). A global meta-analysis found this woodland effect to be greatest on slopes of 10-

20° (Yang et al., 2023). Generally, then, the findings from this present study contradict 

prior research on the relationship between slope gradient, land cover, and SOC. This 

underscores the importance of considering slope gradient in any future studies that 

examine SOC. 

4.3  Explaining the difference in woodland SOC stocks 

As mineral SOC is shown to increase over time with oak woodland age (Benham et al., 

2012), it was expected that the AW would have greater SOC stocks than RW. This was 

shown to not be the case here, and while soil moisture is likely the major driver of SOC 

variation between woodlands (being greater in the RW), it is unlikely to be the sole 

explanation. Results from the PCQ analysis revealed that both the RW and AW had 

effectively the same tree species composition, density, and canopy cover. Thus, while 

tree density is sometimes shown to have a significant positive association with SOC 

stocks (Mayer et al., 2020), this factor is unlikely to be at play here. Rather, other factors 

like management history (e.g., timber extraction and coppicing) likely explain the lower 

SOC stocks in AW compared to RW. For example, coppicing is demonstrated to lead to 

higher rates of CO2 efflux and a short-term decline in SOC stocks (Darenova et al., 2016). 

Although other studies have demonstrated long-term soil (and thus SOC) losses 

following coppicing (Maciej Serda et al., 2019). The discrepancy between observed and 

expected SOC values in the RW and AW also highlights the limitations of 

chronosequence studies. For example, the exact pre-afforestation habitat is unknown 

and these initial SOC stocks may have been significantly higher than those in the current 

P. 

 

4.4  Implications for upland management and future research 

Although the afforestation of upland pasture may have increased SOC stocks in this 

study, the exact reason for this increase is yet to be confirmed. As prior studies more 

often demonstrated losses of SOC, if the gains observed in this study are related to soil 

moisture, then future afforestation projects may benefit from monitoring soil moisture and 

soil respiration where possible. Still, confirming this assumption should be a priority for 

future studies. Several methods may be used for this though a simplified litter bag 

experiment using tea bags can be a cheap and effective approach (Keuskamp et al., 

2013). Alternatively, estimating soil respiration through measurements of soil CO2 efflux 

either in situ using a static chamber technique (Dou et al., 2016) or in the lab from 

collected soil samples (Ortiz et al., 2016) is an option.  

Additionally, while sampling the upper 15 cm of soil was the chosen method in this study 

for its capacity to best reflect recent management changes (Vanguelova et al., 2016), 



around 50% of total SOC can be stored below 30 cm (Laganière et al., 2010; Rumpel 

and Kögel-Knabner, 2010). Indeed, older stands are shown to contain a greater 

proportion of SOC below 20 cm: 30% compared to 20% in younger stands (Hale et al., 

2019). Given this, it is recommended that future studies consider sampling at greater 

depths, particularly when studying older woodlands. This would provide a more 

comprehensive understanding of SOC distribution and the impact of management 

changes on C sequestration in these ecosystems. Moreover, in the instances where the 

afforestation of pasture has been shown to increase SOC stocks, almost all of this gain 

has been attributed to the forest floor (Laganière et al., 2010). This forest floor may 

contain >16% of the total SOC down to 1 m (De Vos et al., 2015). Therefore, future 

research may also benefit from studying the role of the forest floor in enhancing SOC 

sequestration following the afforestation of pasture. 

 

5. CONCLUSION 

In the context of climate change mitigation, this study set out to find whether the 

afforestation of upland pastures with oak woodland can be an effective strategy for 

enhancing SOC stocks. While the SOC stocks reported in this study were relatively high 

for each plot, they were all within the range previously reported for these land covers in 

the UK. However, while previous studies often found negligible to negative rates of SOC 

sequestration following the afforestation of pasture, this study found SOC stocks to be 

lowest in the pasture, followed by the ancient oak woodland, and highest in the 30–40-

year-old naturally regenerated oak woodland. Lower SOC stocks in the P compared to 

woodlands are likely the result of a combination of factors: (1) greater soil moisture 

content in the woodlands, and (2) the significant negative relationship between slope 

gradient and SOC in the P. This present study also contradicted past studies which 

demonstrate that ancient woodlands have greater SOC stocks than younger stands. As 

these woodlands had virtually indistinguishable species composition, tree density, and 

canopy cover, the observed difference in SOC is also likely explained by variations in 

soil moisture. Management history is also likely to have a small impact, with the AW being 

extensively managed in the past for oak timber and coppice. This is known to deplete 

SOC stocks through increasing rates of soil erosion soil respiration. Ultimately, because 

of the uncertainty surrounding the impact of pasture afforestation on SOC stocks, the 

woodland carbon code currently assumes no change. Instead, the results presented here 

demonstrate that the afforestation of upland pastures with oak woodlands can increase 

SOC stocks in the 0-15 cm layer by up to 33.35% over the course of a 40-year period.  
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